DIMENSION OF LEVEL SETS FOR RANDOM WAVELET SERIES

Consider \mathbb{R}^n and let $\{\psi_{k,l}^i\}$ be Schwartz functions (normalized in L^{∞}) that form a wavelet basis for $L^2(\mathbb{R}^n)$. A function $f = \sum_{k=0}^{\infty} c_{k,l}^i \psi_{k,l}^i$ is a random wavelet series if the $c_{k,l}^i$ are a sequence of (real-valued) random variables. Our function f will possess some regularity given by a parameter α and we will denote by $\tilde{c}_{k,l}^i = 2^{k\alpha} c_{k,l}^i$. A random wavelet series is

- called a self-similar random process if the $C_k = {\{\tilde{c}_{k,l}^i\}_{i,l}}$ are identically distributed in $k \in \mathbb{N}$.
- said to have independent increments if $\{\tilde{c}_{k,l}^i\}_{i,k,l\in I}$ are independent whenever the corresponding $\{\psi_{k,l}^i\}_{i,k,l\in I}$ have pairwise disjoint supports.
- said to have stationary increments if all the \tilde{c}_{kl}^i share the same law.

1. Assumptions

Note that $\hat{F}(0) = 1$ and $\|\hat{F}\|_{\infty} = 1$. Let's assume the following:

- (1) The random wavelet series we consider have independent stationary increments and we denote the common law shared by the $\tilde{c}_{k,l}^i$ by F.
- (2) Fourier inversion holds on F; in particular, $F, \hat{F} \in L^1 \cap C^0$.
- (3) $\hat{F} \ge 0$ and \hat{F} has "good" behaviour near the origin.
- (4) There exists a c > 0 so that for any $k \in \mathbb{N}, x \in \mathbb{R}^n$ ther exists i, l such that $|\psi_{k,l}^i(x)| \ge c$.

2. Preliminaries

Note first that $\psi_{k,l}^i(x) = \psi^i(2^k x + l)$. Since the wavelet expansion of f is absolutely convergent a.e., for $t, s \in \mathbb{R}^n$, $f(t) - f(s) = \sum c_{k,l}^i(\psi_{k,l}^i(t) - \psi_{k,l}^i(s))$ and so by independence

$$\mathbb{E}(e^{i(\xi_1 f(t) - \xi_2 f(s))}) = \prod \mathbb{E}(e^{ic_{k,l}^i(\xi_1 \psi_{k,l}^i(t) - \xi_2 \psi_{k,l}^i(s))}) =: \prod \phi_{k,l}^i(t, s, \xi_1, \xi_2).$$

By scaling,

$$\begin{split} \phi_{k,l}^{i}(t,s,\xi_{1},\xi_{2}) &= \mathbb{E}(e^{ic_{k,l}^{i}(\xi_{1}\psi_{k,l}^{i}(t)-\xi_{2}\psi_{k,l}^{i}(s))}) = \mathbb{E}(e^{i\tilde{c}_{k,l}^{i}(2^{-k\alpha}\xi_{1}\psi^{i}(2^{k}t+l)-2^{-k\alpha}\xi_{2}\psi^{i}(2^{k}s+l))}) \\ &= \int_{-\infty}^{\infty} e^{ix(2^{-k\alpha}\xi_{1}\psi^{i}(2^{k}t+l)-2^{-k\alpha}\xi_{2}\psi^{i}(2^{k}s+l))}F(x) \, dx \\ &= \hat{F}(2^{-k\alpha}(\xi_{1}\psi^{i}(2^{k}t+l)-\xi_{2}\psi^{i}(2^{k}s+l))) \end{split}$$

3. A BOUND

We note that

$$|\mathbb{E}(e^{i(\xi_1 f(t) - \xi_2 f(s))})| \leq \left| \prod_{2^{-k} \sim |t-s|} \phi^i_{k,l}(t, s, \xi_1, \xi_2) \right|.$$

In this case,

$$\begin{split} \phi_{k,l}^{i}(t,s,\xi_{1},\xi_{2}) &= \mathbb{E}(e^{ic_{k,l}^{i}(\xi_{1}\psi_{k,l}^{i}(t)-\xi_{2}\psi_{k,l}^{i}(s))}) = \mathbb{E}(e^{i\tilde{c}_{k,l}^{i}2^{-k\alpha}\xi_{1}\psi^{i}(2^{k}t+l)}) \\ &= \int_{-\infty}^{\infty} e^{ix2^{-k\alpha}\xi_{1}\psi^{i}(2^{k}t+l)}F(x) \, dx \\ &= \hat{F}(2^{-k\alpha}\xi_{1}\psi^{i}(2^{k}t+l)) \end{split}$$

So we have

$$|\mathbb{E}(e^{i(\xi_1 f(t) - \xi_2 f(s))})| \leq \left| \prod_{2^{-k} < |t-s| \le 2^{-k-1}} \hat{F}(2^{-k\alpha} \xi_1 \psi^i (2^k t + l)) \hat{F}(2^{-k\alpha} \xi_2 \psi^i (2^k s + l')) \right|$$

Thus

$$\int |\mathbb{E}(e^{i(\xi_1 f(t) - \xi_2 f(s))})| d\xi_1 d\xi_2 \leq C(t)C(s)2^{2k\alpha} \leq |t - s|^{-2\alpha}$$

where $C(t) = \int |\hat{F}(\xi_1 \psi^i (2^k t + l))| d\xi_1 \sim \frac{\|\hat{F}\|_{L^1}}{|\psi^i (2^k t + l)|} < c^{-1} \|\hat{F}\|_{L^1}.$

4. KAHANE'S ARGUMENT

Let $\delta_1 : \mathbb{R}^n \to [0,1]$ be a smooth compactly-supported function with $\delta_1(0) = 1$. Let $\delta_{\varepsilon}(x) = \varepsilon^{-d} \delta_1(x/\varepsilon)$. Write this using the Fourier transform as

$$\delta_{\varepsilon}(x) = \int \gamma(\varepsilon\xi) e^{i\xi x} d\xi.$$

Now consider

$$\delta_{\varepsilon}(f(x)) = \int \gamma(\varepsilon\xi) e^{i\xi f(x)} d\xi$$

and the measure $\mu_{\varepsilon} := \delta_{\varepsilon}(f(x)) \mathcal{L}^n$. The capacity of this measure wrt. some kernel κ is given by

$$I(\mu_{\varepsilon},\kappa) = \int \gamma(\varepsilon\xi_1)\bar{\gamma}(\varepsilon\xi_2)e^{i(\xi_1f(t)-\xi_2f(s))}\kappa(t-s)\,d\xi_1d\xi_2dtds$$

and so, its expectation is

$$\mathbb{E}I(\mu_{\varepsilon},\kappa) = \int \gamma(\varepsilon\xi_1)\bar{\gamma}(\varepsilon\xi_2)\mathbb{E}(e^{i(\xi_1f(t)-\xi_2f(s))})\kappa(t-s)\,d\xi_1d\xi_2dtds\,.$$

Thus in order to get lower bounds on the dimension, we need estimates on $\mathbb{E}(e^{i(\xi_1 f(t) - \xi_2 f(s))})$. Plugging in the estimates tells us that the above expectation is uniformly finite for $\kappa(t) = |t|^{-\beta}$ for any $\beta < n - 2\alpha$.

As $\mu_{\epsilon}(B)$ is bounded independent of ϵ for any ball B, we get a weakly convergent subsequence $\mu_{\epsilon} \to \mu$. It is clear that μ is non-negative, supported on $L_0(f)$, and that $\mathbb{E}I(\mu, \kappa) < +\infty$. So we're left to prove that $\mu \neq 0$ almost surely. To this end, note that for any ball B of radius 1,

$$\mathbb{P}(\mu(B) \neq 0) \ge \frac{(\mathbb{E}(\mu(B)))^2}{\mathbb{E}(\mu(B)^2)}$$

But now

$$\mathbb{E}(\mu_{\epsilon}(B)) = \int_{B} \int \gamma(\epsilon\xi) \mathbb{E}(e^{i\xi f(x)}) \, d\xi dx = \int_{B} \int \gamma(\epsilon\xi) \prod \hat{F}(2^{-k\alpha}\xi\psi^{i}(2^{k}x+l)) \, d\xi dx \ge C > 0 \,,$$

for a constant C independent of the location of the ball B. That $\mathbb{E}(\mu(B)^2)$ is bounded above follows similarly to the computation in the previous section. So we conclude that $\mathbb{P}(\mu(B) \neq 0) > 0$ independent of B.

Now as $\mu(B_1(i))$ for $i \in 3\mathbb{Z}$ are independent events, by the Kolmogorov 0-1 law, we conclude that $\mu \neq 0$ almost surely.