DIMENSION OF LEVEL SETS FOR RANDOM WAVELET SERIES

Consider R”™ and let {1% ,} be Schwartz functions (normalized in L*) that form a wavelet
basis for L2(R"). A function f = Y77, c};ﬂjfc’l is a random wavelet series if the c};,l are a
sequence of (real-valued) random variables. Our function f will possess some regularity given
by a parameter o and we will denote by ¢; ; = 2’““02’[. A random wavelet series is

e called a self-similar random process if the C} = {E}€ 1}iy are identically distributed in
ke N. .
e said to have independent increments if {6}c l}i7k7l€ 1 are independent whenever the corre-

sponding {¢} ,}; ke have pairwise disjoint supports.
e said to have stationary increments if all the E};’l share the same law.

1. ASSUMPTIONS

Note that F(0) = 1 and ||F'|, = 1. Let’s assume the following:

(1) The random wavelet series we consider have independent stationary increments and we
denote the common law shared by the ¢ ; by F.

(2) Fourier inversion holds on F; in particular, F, FelL'nQO.
(3) F' =0 and F has “good” behaviour near the origin. '
(4) There exists a ¢ > 0 so that for any k € N,z € R" ther exists i, such that |¢ ,(z)] > c.

2. PRELIMINARIES
Note first that w,i,l(x) = ¢*(2k2 +1). Since the wavelet expansion of f is absolutely convergent
a.e., for t,s e R™, f(t) — f(s) = Zc};,l(z/}};l(t) - 1/1271(5)) and so by independence
E (/6 O6SO) = [TE(e R OO0y = T} (25,61, 6).

By scaling,
oL (t,s,&1,8) = E(eiciﬁl(&w};’,(t)ffzw};,(s))) — E(eiéi,z(2‘k“£1wi(2’“t+l)*2‘k°‘£2w"(2’“S+l)))
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3. A BOUND

We note that

|E(ei(£1f(t)*£2f(s)))| < H ¢271(t,5,§1,€2) :
27k~ t—s]
In this case,
Skt s,61,62) = Bk VhO=EVL )  (eidh 2 02Dy
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So we have

[E(e/ 06700 < [T P& @t +0)FE 6y (25 + 1))

2—k<|t—s|<2—k-1

Thus
/|E(ei(§1f(t)—§2f(8)))| dérdey < C(H)C(s)2%F < |t — 5|72

7 F — n
where C(t) = [ |F(&07 (25 + 1))| &y ~ % <Y F| .
4. KAHANE’S ARGUMENT
Let 01 : R™ — [0, 1] be a smooth compactly-supported function with ;(0) = 1. Let d.(x) =
£7461(x/c). Write this using the Fourier transform as

5u(a) = [ A(eg)e de.
Now consider
5(7(@) = [ (e dg

and the measure p. := d.(f(z)) L™. The capacity of this measure wrt. some kernel & is given by

I(pe, k) = / (e€1)Y(e&o) e =IO (¢ — 5) dedésdtds

and so, its expectation is
EI(pie, ) = / (e61)7(e&)B(e &S D=F ()Y o(1 — ) de deydtds .

Thus in order to get lower bounds on the dimension, we need estimates on E(e!¢1/(0)—€2f())),
Plugging in the estimates tells us that the above expectation is uniformly finite for s (t) = [t|~?
for any g <n — 2a.

As pe(B) is bounded independent of € for any ball B, we get a weakly convergent subsequence
te — . It is clear that p is non-negative, supported on Lo(f), and that EI(u, k) < +00. So
we're left to prove that p # 0 almost surely. To this end, note that for any ball B of radius 1,

(E@(B))*
B(u(B)?)

= € eiff(l’) T = € fo—kag )i k.%' >
[ [ agin - [ [ [[Fetoswieta + )= ¢ > o0,

for a constant C' independent of the location of the ball B. That E(u(B)?) is bounded above
follows similarly to the computation in the previous section. So we conclude that P(u(B) #
0) > 0 independent of B.

Now as p(Bj(i)) for ¢ € 3Z are independent events, by the Kolmogorov 0-1 law, we conclude
that p # 0 almost surely.

P(u(B) #0) =

But now



	1. Assumptions
	2. Preliminaries
	3. A bound
	4. Kahane's argument

