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PRECURSORS IN MATHEMATICS: EARLY WAVELET BASES

Wavelets and Hilbert Bases

P. G. Lemarié and Y. Meyer
In homage to A. P. Calderón
Translated by John Horváth

1. Introduction
Wavelet transforms appear implicitly in a famous work of A. P. Calderón [2]. It was rediscov-
ered and made explicit by J. Morlet and his collaborators [4], [7], [8] as an efficient technique
of numerical analysis allowing signal processing in connection with oil prospecting.

Wavelet transforms are similar to the Fourier transformation but the imaginary ex-
ponentials exp(ix · ξ) indexed by the frequencies ξ ∈ Rn are replaced by the “wavelets” ψQ
indexed by the collection of all the cubes Q ⊂ Rn. These “wavelets” ψQ are all copies (by
translation and change of scale) of the same regular function ψ, decreasing at infinity as
strongly as possible. To be more precise, we choose ψ in the class S(Rn) of L. Schwartz
and if the cube Q is defined by aj ≤ xj ≤ aj + d, 1 ≤ j ≤ n, where a = (a1, . . . , an), then
ψQ(x) = d−n/2 ψ((x− a)/d). This means that ψQ is localized and adjusted to the cube Q.

The goal is to be able to write, by a judicious choice of ψ, any function f as a sum or as
an integral of the cQ ψQ(x), where the coefficients cQ are calculated like Fourier coefficients:

cQ =
∫
Rn

f(x)ψQ(x) dx.

The authors mentioned above have obtained conditions on ψ allowing us to reconsti-
tute f with the help of the redundant information given by the knowledge of all the “wavelet
coefficients” cQ.

Following a procedure made explicit by L. Carleson in [3], we propose to make this
redundancy disappear by replacing the collection of all the cubes Q ⊂ Rn by that, denoted
Q, of the dyadic cubes. A dyadic cube Q is defined by two indices j ∈ Z, k ∈ Zn, and
one has

Q = {x ∈ Rn; 2jx− k ∈ [0, 1]n}. (1.1)

The construction that will follow is, as in [3], an imitation of the Haar system of which
we recall the definition.

We call h(1)(t) the function equal to 1 if 0 ≤ t < 1/2, to −1 if 1/2 ≤ t < 1, and
to 0 elsewhere. On the other hand, h(0)(t) is the characteristic function of the interval

Translator’s Note: The references have been updated, and a new version of Figure 1 was generated by Norbert
Kaiblinger.

Authors’ Note: As is the case for the paper “Uncertainty Principle, Hilbert Bases, and Algebras of Operators”
reprinted preceding this one, the notion of multiresolution analysis is still missing from this paper, and so is any
reference to Strömberg’s work.
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[0, 1]. We denote by E ⊂ {0, 1}n the set of the 2n − 1 sequences (ε1, . . . , εn) of zeros and
ones, excluding the sequence (0, 0, . . . , 0). Then the Haar system for L2(Rn) consists of
the functions h(ε)

Q , ε ∈ E, Q ∈ Q, defined by

h
(ε)
Q (x) = 2nj/2 h(ε1)(2jx1 − k1) · · · h(εn)(2jxn − kn).

The Haar system is well adapted to the function spaces Lp(Rn), 1 < p < +∞, but
does not permit the study of Sobolev and Besov spaces, or of the Hardy spaces H1(Rn) of
Stein and Weiss.

The generally admitted idea is that “to smooth the Haar system makes the orthogo-
nality disappear.” This is what appears reading [3] or [6]. We shall see, however, that there
exists an exceptional choice of two functions ψ(0) and ψ(1) of S(R) such that the sequence
of functions

ψ
(ε)
Q (x) = 2nj/2 ψ(ε1)(2jx1 − k1) · · · ψ(εn)(2jxn − kn) (1.2)

is a Hilbert basis of L2(Rn) (ε ∈ E, Q ∈ Q).
This basis suits all the classical function spaces: Sobolev, Besov, Hardy, . . . , spaces

that translate isomorphically into sequence spaces. In particular, the coefficients of a func-
tion f ∈ H1(Rn) with respect to the basis ψ(ε)

Q , ε ∈ E, Q ∈ Q, and those of a function

g in the dyadic version of H1 with respect to the basis h(ε)
Q are characterized by the same

condition. This remark yields a very simple proof of Maurey’s theorem (see Theorem 4
below).

In the fundamental identity

f(x) =
∑
ε∈E

∑
Q∈Q

〈f, ψ(ε)
Q 〉ψ(ε)

Q (x) (1.3)

we dispose of several levels of reading.
If f ∈ L2(Rn), then we deal with the usual decomposition with respect to an or-

thonormal basis. The convergence is in the quadratic mean and almost everywhere.
If f(x) and its derivatives of order 1 belong to L2(Rn), then we have also convergence

in L2(Rn) of the termwise differentiated series. If more generally f and its derivatives up
to order s (s ∈ N) belong to L2(Rn), then the series (1.3) will converge automatically with
respect to the corresponding norm, that is, that of the Sobolev space Hs. In other words,
the regularity of f accelerates the convergence (as this is the case for Fourier series but
certainly not for the Haar system). Finally, we will show that this new algorithm permits a
very simple writing of the paraproduct π(a, f) of J. M. Bony [1].

2. Statement of the Fundamental Theorem
We begin by constructing special functions of one real variable. We denote by S the interval
[2π/3, 4π/3]. Thus we have 2S = [4π/3, 8π/3], S − 2π = −S = [−4π/3, −2π/3] and hence
also 2π−S = S. We denote by θ(t) an odd function of the real variable t, of class C∞, with
values in [−π/4, π/4], equal to π/4 if t ≥ π/3 (hence to −π/4 if t ≤ −π/3). One defines
the even function ω(t) by ω(t) = 0 if 0 ≤ t ≤ 2π/3 or if t ≥ 8π/3, ω(t) = π/4 + θ(t− π) if
2π/3 ≤ t ≤ 4π/3, and ω(t) = π/4 − θ(t/2 − π) if 4π/3 ≤ t ≤ 8π/3.
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The fundamental identities satisfied by ω(t) are ω(−t) = ω(t), ω(2t) = π/2 − ω(t),
t ∈ S, and

ω(t− 2π) = ω(2π − t) =
π

2
− ω(t), t ∈ S.

By construction ω(t) is infinitely differentiable.
With the help of ω(t) one defines ψ ∈ S(R) by

ψ̂(t) = e−it/2 sinω(t) = e−it/2 ω̃(t). (2.1)

Thus we have
ψ(t) =

1
π

∫ ∞

0
cos
[(
t− 1

2

)
s

]
ω̃(s) ds. (2.2)

As J. Morlet made us observe, one can also start from an odd function ω1(t) defined
by ω1(t) = −ω(t) if t ≥ 0 (and hence ω1(t) = ω(t) if t ≤ 0). We associate with it ψ1 ∈ S(R)
defined by

ψ̂1(t) = e−it/2 sinω1(t), (2.3)

which implies

ψ1(t) =
1
π

∫ ∞

0
sin
[(
t− 1

2

)
s

]
sinω(s) ds. (2.4)

In the theorems that follow ψ can be replaced systematically by ψ1. If I ⊂ R is the dyadic
interval defined by 2jx− k ∈ [0, 1], we define ψI by ψI(x) = 2j/2 ψ(2jx− k).

Then we have

Theorem 1 The collection of wavelets ψI(x) is a Hilbert basis of L2(R).
We shall give the corresponding statement in Rn resuming the notation of the in-

troduction and imitating the construction of the Haar system. The function ψ stays the
same as above, and we associate with it a function ϕ ∈ S(R) having integral 1, defined by
ϕ̂(t) = cosω(t) if |t| ≤ 4π/3 and by ϕ̂(t) = 0 otherwise.

One sets ψ(0)(t) = ϕ(t), ψ(1)(t) = ψ(t) and defines ψ(ε) ∈ S(Rn) by

ψ(ε)(x) = ψ(ε1)(x1)ψ(ε2)(x2) · · · ψ(εn)(xn),

where ε = (ε1, . . . , εn) ∈ E; this means that εj = 0 or 1 but the sequence consisting only of
zeros is excluded.

Let us recall that a dyadic cube Q is defined by j ∈ Z, k ∈ Zn and is the set of the
x ∈ Rn such that 2jx− k ∈ [0, 1]n. We then set

ψ
(ε)
Q (x) = 2nj/2 ψ(ε)(2jx− k)

= 2nj/2 ψ(ε1)(2jx1 − k1) · · · ψ(εn)(2jxn − kn).
(2.5)

With this notation, we intend to prove the following result.

Theorem 2 The collection of functions ψ(ε)
Q , ε ∈ E, Q ∈ Q, is a Hilbert basis of L2(Rn).

Before proving this result, let us introduce some notation. In spite of the fact that the
choice of ψ is not unique, the functions ψ(ε)

Q , ε ∈ E, Q ∈ Q, will be called the wavelets. Any

series
∑

ε∈E
∑

Q∈Q α(ε,Q)ψ(ε)
Q (x) is called a series of wavelets.
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If f(x) belongs to L2(Rn) or, more generally, is a tempered distribution, the
coefficients

α(ε,Q) =
∫
f(x)ψ(ε)

Q (x) dx (2.6)

will be called the wavelet coefficients. An easy consequence of Theorem 2 is that one will
always have the inversion formula

f(x) =
∑
ε∈E

∑
Q∈Q

α(ε,Q)ψ(ε)
Q (x) (2.7)

in the following sense: for every test function u(x) ∈ S(Rn) whose moments are all zero,

〈f, u〉 =
∑
ε∈E

∑
Q∈Q

α(ε,Q)
∫
Rn

ψ
(ε)
Q (x)u(x) dx.

Finally, the transformation that associates with the tempered distribution f the numerical
sequence α(ε,Q) will be called the wavelet transform. It plays the role of a local Fourier
transformation (in fact the integration is extended over the whole Rn, but there is a strong
decay due to the rapid decrease of ψ). We split the proof of Theorem 2 into two parts.

First we shall prove that ψ(ε)
Q is orthogonal to ψ(ε′)

Q′ if (Q, ε) �= (Q′, ε′). Then we shall

show that any function f ∈ L2(Rn; dx) orthogonal to each of the ψ(ε)
Q , ε ∈ E, Q ∈ Q, is

necessarily zero.
The orthogonality relations follow from the corresponding properties in one real vari-

able (which we will describe).

Lemma 1 One has ∫ ∞

−∞
ϕ̂(t) ψ̂(2−jt) eik2

−jt dt = 0

for all j ∈ N and all k ∈ Z. Similarly one has∫ ∞

−∞
ψ̂(t) ψ̂(2−jt) eik2

−jt dt = 0

for j ≥ 1 and k ∈ Z.

Let us begin by proving the first relation. If j ≥ 1, the supports of ϕ̂(t) and of ψ̂(2−jt)
are disjoint.

If j = 0, one has ϕ̂(t) ψ̂(t) = eit/2 sinω(t) cosω(t) if |t| ≤ 4π/3, and = 0 otherwise.

The support of ϕ̂ψ̂ is thus composed of the two intervals S = [2π/3, 4π/3] and S− 2π. The
identity ω(t− 2π) = π/2 − ω(t) and the relation eiπ = −1 conclude the verification.

The proof of the second assertion is the same. If j ≥ 2, the supports of ψ̂(t) and
of ψ̂(2−jt) are disjoint. It remains to consider the case j = 1 and one makes in the
integral the change of variables t = 2s. Returning to the variable t, one observes that
ψ̂(2t)ψ̂(t) = e−it/2 sinω(t) cosω(t) if |t| ≤ 4π/3, and = 0 elsewhere. We are brought back
to the preceding case.

We shall now elucidate the case j = 0.
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Lemma 2 For every k ∈ Z, k �= 0 one has∫ ∞

−∞
|ϕ̂(t)|2 eikt dt =

∫ ∞

−∞
|ψ̂(t)|2 eikt dt = 0.

To see this, we will prove that

∞∑
−∞

|ψ̂(t+ 2πj)|2 =
∞∑

−∞
|ϕ̂(t+ 2πj)|2 = 1.

We shall limit ourselves to the first identity. The sum to be calculated defines a 2π-periodic
function which it suffices to know on an interval of length 2π. We choose the interval
2π/3 ≤ t ≤ 8π/3. If 2π/3 ≤ t ≤ 4π/3, the only values of j that arise are j = 0 and
j = −1. Because ω(t− 2π) = π/2 −ω(t), the identity follows from sin2 ω(t) + cos2 ω(t) = 1.
If 4π/3 ≤ t ≤ 8π/3, one has to take j = 0 and j = −2, and one concludes in the same way.

Let us return to the orthogonality between the ψ(ε)
Q . One is led to calculate the integral

I(j, j′, k, k′, ε, ε′) =
∫
Rn

exp[i(k2−j − k′2−j′
)ξ] ψ̂(ε1)(2−jξ1) ψ̂(ε′1)(2−j′

ξ1)

· · · ψ̂(εn)(2−jξn) ψ̂(ε′n)(2−j′
ξn) dξ1 · · · dξn.

By symmetry we may assume that j ≤ j′. One makes immediately the change of variables
2−j ξ = u and is thereby reduced to the case j = 0, which we will suppose henceforth. If
j′ ≥ 1, we call m a subscript such that εm = 1 (such a subscript exists since ε ∈ E). One
integrates first with respect to the variable xm, and Lemma 1 ensures that I is zero. If
j′ = 0 and k �= k′, there exists a subscript m such that km �= k′

m. One integrates first with
respect to the variable xm and I is zero, either because of the first assertion of Lemma 1 or
because of Lemma 2.

Finally, the last case to consider is j′ = 0, k = k′, and ε �= ε′. Then there is a subscript
m such that εm = 1 and ε′m = 0 and the first assertion of Lemma 1 implies the nullity of
the integral.

One verifies without effort that ‖ψ(ε)
Q ‖2 = 1 for all ε and all Q.

3. The Sequence of the ψ(ε)
Q is a Total Subset in L2(Rn)

We arrive at the most technical part of the proof of Theorem 2.
We will verify that 〈f, ψ(ε)

Q 〉 = 0 for all ε ∈ E and all Q ∈ Q implies f = 0.
For this we will write these relations using the Fourier transformation. Changing the

notation as convenient, we have for a certain function f ∈ L2(Rn)∫
Rn

f(ξ) exp(ik2−jξ) ψ̂(ε1)(2−jξ1) · · · ψ̂(εn)(2−jξn) dξ1 · · · dξn = 0 (3.1)

for every j ∈ Z, every k ∈ Zn, and every sequence (ε1, . . . , εn) �= (0, . . . , 0) of zeros
and ones.
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We must deduce from this that f = 0. We proceed to the change of variables 2−jξ = u.
Then (3.1) becomes∫

Rn

fj(ξ) exp(ikξ) ψ̂(ε1)(ξ1) · · · ψ̂(εn)(ξn) dξ = 0 where fj(ξ) = f(2jξ). (3.2)

It is classical that for a fixed j and all k ∈ Zn (3.2) is equivalent to the identity∑
k∈Zn

fj(ξ + 2kπ) ψ̂(ε1)(ξ1 + 2k1π) · · · ψ̂(εn)(ξn + 2knπ) = 0. (3.3)

This identity must be satisfied for all j ∈ Z, all ε ∈ E, and all ξ ∈ Rn. The ideal situation
would be if there existed a subset Ω ⊂ Rn having the following properties: the translates
Ω + 2kπ, k ∈ Zn are pairwise disjoint; for every ξ ∈ Rn there exists a j ∈ Zn such
that 2jξ ∈ Ω; and finally, for every ξ ∈ Ω there exists ε ∈ E such that ψ̂(ε1)(ξ1) �= 0, . . . ,
ψ̂(εn)(ξn) �= 0. Then (3.3) would imply that fj(ξ) = 0 on Ω for all j ∈ Z and thus f = 0. Nat-
urally this is not the case, but we will try to come as close to this ideal situation as possible.

To simplify the notation which follows, we shall restrict ourselves to dimension n = 2.
Let us write again (3.3) in detail:∑

k

∑
�

fj(u+ 2kπ, v + 2�π) ψ̂(u+ 2kπ) ψ̂(v + 2�π) = 0, (3.4)

∑
k

∑
�

fj(u+ 2kπ, v + 2�π) ϕ̂(u+ 2kπ) ψ̂(v + 2�π) = 0, (3.5)

∑
k

∑
�

fj(u+ 2kπ, v + 2�π) ψ̂(u+ 2kπ) ϕ̂(v + 2�π) = 0. (3.6)

The sums (3.4) to (3.6) define obviously (2πZ)2-periodic functions, which we will analyze
on a “fundamental domain.” First we shall suppose that

(u, v) ∈
[
2π
3
,

4π
3

]2

= Ω1

and consider that (3.4), (3.5), and (3.6) are coupling fj(u, v) (which we try to calculate) to
the undesirable values fj(u+ 2kπ, v + 2�π), which we will try to eliminate.

For (u, v) ∈ Ω1 we have necessarily k = 0 or k = −1 and � = 0 or � = −1. Setting
fj = fj(u, v), gj = fj(u− 2π, v), f̃j = fj(u, v − 2π), and g̃j = fj(u− 2π, v − 2π), we have

sinω(u) sinω(v) fj − cosω(u) sinω(v) gj

− sinω(u) cosω(v) f̃j + cosω(u) cosω(v) g̃j = 0, (3.7)

cosω(u) cosω(v) fj + sinω(u) sinω(v) gj

− cosω(u) cosω(v) f̃j − sinω(u) cosω(v) g̃j = 0, (3.8)

sinω(u) cosω(v) fj − cosω(u) cosω(v) gj

+ sinω(u) sinω(v) f̃j − cosω(u) sinω(v) g̃j = 0. (3.9)
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These three relations obviously do not allow us to calculate the four unknowns, which are
fj , gj , f̃j , and g̃j .

We consider (3.4) for the point (u′, v′) = (2u, 2v).
Then the sole values of k and � that need be considered are k = 0 or k = −2, � = 0

or � = −2.
We observe that fj(u′, v′) = fj+1(u, v), fj(u′ − 4π, v′) = fj+1(u − 2π, v), etc, . . . .

Shifting the subscript j by a unit, we therefore obtain the missing relation in the form

sinω(u) sinω(v) fj + cosω(u) sinω(v) gj

+ sinω(u) cosω(v) f̃j + cosω(u) cosω(v) g̃j = 0. (3.10)

The determinant of the four equations written is equal to 1, and we obtain thus fj = gj =
f̃j = g̃j = 0 for every j ∈ Z.

Let us denote now by Ω2 the rectangle π/3 ≤ u ≤ 2π/3, 2π/3 ≤ v ≤ 4π/3. We must
observe that ψ̃(u) = 0 on Ω2 while ϕ̃(u) = 1. The only relation pertinent for calculating
fj(u, v) if (u, v) ∈ Ω2 is therefore (3.5). The only values of k and � that really occur are
k = 0 and � = 0 or � = −1.

We still set fj = fj(u, v) and f̃j = fj(u, v − 2π) and have

fj sinω(v) − f̃j cosω(v) = 0. (3.11)

Obviously this sole relation does not permit us to calculate fj and f̃j . But here again we
consider the point (2u, 2v) by which one writes (3.4) and (3.5). The only values of k or �
that occur are k = 0 and k = −1, � = 0 or � = −2. Let us set σj = fj(u, v) cosω(v) +
fj(u, v−2π) sinω(v) and τj = fj(u−π, v) cosω(v)+fj(u−π, v−2π) sinω(v) (having taken
care to shift the subscripts by a unit).

Thus we have σj cosω(2u)+τj sinω(2u) = 0 and σj sinω(2u)−τj cosω(2u) = 0. These
two relations imply σj = 0 or

fj cosω(v) − f̃j sinω(v) = 0. (3.12)

The relations (3.11) and (3.12) imply fj = f̃j = 0 for every j ∈ Z. Naturally, the same
approach suits the other seven rectangles obtained by symmetry with respect to the co-
ordinate axes or their bisectors, starting with Ω2. Finally, one studies the rectangle Ω3
defined by 0 ≤ u ≤ π/3 and 2π/3 ≤ v ≤ 4π/3. The only significant relation is again
fj sinω(v) − f̃j cosω(v) = 0. We use the same strategy as above, writing (after the nec-
essary shift of j) the corresponding relation on the rectangle 2Ω3 for the point (2u, 2v). It
follows that fj cosω(v) − f̃j sinω(v) = 0, which yields fj = f̃j = 0 on Ω3. Here again we
obtain the same conclusion for all the rectangles deduced from Ω3 by all the symmetries of
the problem.

Due to the examination of these three “fundamental domains,” the whole annulus
2π/3 ≤ sup(|u|, |v|) ≤ 8π/3 is filled and f(2ju, 2jv) = 0 in this annulus. It follows immedi-
ately that f = 0 almost everywhere on R2.
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4. Convergence of the Series of Wavelets in the Spaces
of Test Functions or Distributions
Let S(Rn) be the space of test functions equipped with the usual topology and S0 ⊂ S the
subspace formed by the functions f ∈ S that verify

∫
Rn x

α f(x) dx = 0 for all α ∈ Nn (i.e.,
all its moments are zero). Then all the wavelets ψ(ε)

Q belong to S0. If a series of wavelets
converges in S, it also converges in S0 to a function of S0. One proves easily that the converse
is true.

Lemma 3 If f ∈ S0, then the series of wavelets converges to f in the sense of the topol-
ogy of S.

What happens, then, when f belongs to S? It is easy to show that the series of wavelets
converges to f uniformly on Rn and that the same is true for the differentiated series.

Let us now start with the function 1 (identically equal to 1 on the whole Rn). Every
coefficient (in wavelets) of 1 is 0. Why does one obtain an absurd numerical equality?

Let us consider the topological dual space of S0(Rn). This is the quotient space
S ′(Rn)/C[x] of the tempered distributions modulo the polynomials. If S is such a tem-
pered distribution, then the corresponding series of wavelets

∑
Q∈Q λQ ψ

(ε)
Q (x) converges in

the following sense: for every function f ∈ S0 there is numerical convergence of the series
obtained by integration against f . This is the reason why one obtains 1 = 0 (modulo the
constant functions).

5. Characterization of the Spaces Lp(Rn), 1 < p ≤ +∞, BMO(Rn)
and of its Predual H1(Rn) by Transformation into Wavelets
Let E be a separable Banach space. A sequence (ek)k∈N of elements of E is a basis of E
if every vector x ∈ E can be written uniquely as x =

∑∞
0 ξk ek, where the ξk are scalars

and where the partial sums of the written series converge to x in the norm of E. The basis
is said to be unconditional if there exists a constant C ≥ 1 such that for every m ≥ 1 and
every sequence ξk, k ∈ N, of scalars one has ‖∑m

0 λk ξk ek‖E ≤ C ‖∑m
0 ξk ek‖E as soon as

sup |λk| ≤ 1.
This means that the condition for a series

∑∞
0 ξk ek to belong to E concerns only

the sequence |ξk|, k ∈ N, and that if a sequence satisfies this condition then automatically
every other sequence satisfies it whose absolute values are dominated termwise by those of
the first one.

The space BMO(Rn) is not separable and therefore does not possess an unconditional
basis. We will replace it by the separable version VMO(Rn), which is the closure in the
norm of BMO(Rn) of the space S(Rn) of test functions.

Theorem 3 The sequence ψ(ε)
Q , ε ∈ E, Q ∈ Q is an unconditional basis for Lp(Rn; dx),

1 < p ≤ +∞, VMO(Rn), and H1(Rn).

To prove it one constructs explicitly the operator T that transforms ψ
(ε)
Q into

λ(Q, ε)ψ(ε)
Q if |λ(Q, ε)| ≤ 1. The distributional kernel of T is K(x, y) =

∑
ε∈E

∑
Q∈Q λ(Q, ε)
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ψ
(ε)
Q (x)ψ(ε)

Q (y). One obtains easily the Calderón-Zygmund estimates

|∂αx ∂βyK(x, y)| ≤ C(α, β) |x− y|−n−|α|−|β| (5.1)

for all x ∈ Rn, all y �= x, α ∈ Nn, and β ∈ Nn.
On the other hand, T is obviously bounded on L2(Rn) since it is diagonalized in

an orthonormal basis. Finally T verifies in the sense of the theorem of David and Journé
T (1) = T ∗(1) = 0.

It follows that T is bounded on Lp(Rn), 1 < p < ∞, and on the “boundary spaces”
H1(Rn) and VMO(Rn).

It remains to write down explicit criteria of belonging to these function spaces. To
this effect we recall the construction of the Haar basis of L2(Rn; dx). One denotes by ψ̃(x)
the function of a real variable equal to 1 on [0, 1/2[, to −1 on [1/2, 1[, and to 0 elsewhere.
One calls ϕ̃ the characteristic function of the interval [0, 1] (equal to 1 on this interval and
to 0 elsewhere). One then constructs for all ε ∈ E and all Q ∈ Q

ψ̃
(ε)
Q = 2nj/2 ψ̃(ε1)(2jx1 − k1) · · · ψ̃(εn)(2jxn − kn),

where ψ̃(0) = ϕ̃, ψ̃(1) = ψ̃.

Theorem 4 The isometry U : L2(Rn; dx) → L2(Rn; dx) which associates ψ̃(ε)
Q with ψ

(ε)
Q

extends to an isomorphism of Lp(Rn) onto itself if 1 < p < +∞, to an isomorphism of
the Hardy space H1(Rn; dx) of Stein and Weiss onto its dyadic version H1

d , and to an
isomorphism of the space BMO(Rn; dx) of John and Nirenberg onto its dyadic version.

This means that the (wavelet) coefficients λ(Q, ε) of f ∈ Lp(Rn) are characterized by
the condition (∑

ε

∑
Q

|λ(Q, ε)|2|Q|−1χ
Q(x)

)1/2

∈ Lp(Rn)

where 1 < p < ∞. One denotes by |Q| the volume of Q and by χ
Q(x) the characteristic

(“indicator”) function of Q.
If p = 1, then this condition characterizes the coefficients of f ∈ H1(Rn). Finally we

will show, and this will be the beginning of the proof, that the wavelet coefficients λ(Q, ε)
of f ∈ BMO(Rn) are characterized by Carleson’s condition∑

ε

∑
Q⊂R

|λ(Q, ε)|2 ≤ C|R| (5.2)

(for every dyadic cube R, the summation being extended over all dyadic subcubes Q ⊂ R).
Let us first prove that (5.2) implies the convergence for the topology σ(BMO, H1)

of the series
∑

ε

∑
Q λ(Q, ε)ψ(ε)

Q to a function f ∈ BMO. To do this we disregard the
index ε and reason on finite sums. Passing to the limit is routine once the inequality
‖∑Q λ(Q)ψQ(x)‖BMO ≤ C0 ||| λ(Q) ||| is established for these finite sums, C0 depends
only on n, and ||| · ||| is the lower bound of the

√
C in (5.2).

Let ϕ ∈ D(Rn) be a function having integral 1 and supported by the unit cube
0 ≤ xj ≤ 1 (1 ≤ j ≤ n).
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We set ϕQ(x) = 2nj ϕ(2jx− k) so that ϕQ(x) is supported by the dyadic cube Q and
has integral equal to 1. Then one considers the distribution

K(x, y) =
∑
Q∈Q

λ(Q)ψQ(x)ϕQ(y).

One has |λ(Q)| ≤ (C|Q|)1/2, from which it follows immediately that K(x, y) satisfies (5.1).
Let us show that the operator T , whose distributional kernel is K(x, y), is bounded on
L2(Rn). One has

‖T (f)‖2 =
∥∥∥∥∑
Q∈Q

λ(Q)
(∫

f ϕQ

)
ψQ(x)

∥∥∥∥
2

=
(∑
Q∈Q

|λ(Q)|2
∣∣∣∣
∫
f ϕQ

∣∣∣∣2
)1/2

≤ C0 ||| λ(Q) ||| ‖f‖2

due to the dyadic version of Carleson’s inequality stated in the following lemma.

Lemma 4 Let pQ, Q ∈ Q, xQ, Q ∈ Q, be two arbitrary positive sequences, and ω(x), x ∈
Rn, the maximal function defined by ω(x) = supQ
x xQ. Let us assume that for every dyadic
cube R ∈ Q we have

∑
Q⊂R pQ ≤ |R|. Then one has

∑
Q∈Q pQ xQ ≤ ∫Rn ω(x) dx.

Therefore one has continuity of T : L2(Rn; dx) → L2(Rn; dx).
This, combined with (5.1), implies T (1) ∈ BMO, which is in fact what we tried to

prove.
Conversely let us assume that f belongs to BMO.
We denote by R a dyadic cube and by Rj , j ≥ 1, the (nondyadic) cubes with the same

center as R whose sides are 2j times those of R. We decompose, as usual, f in the series

f = c(R) + f0(x) + f1(x) + · · · + fj(x) + · · · ,
where c(R) = mRf is the mean of f on R and where f0(x) = f(x) − c(R) on the cube R,
f0(x) = 0 elsewhere, and fj(x) = f(x)− c(R) on Rj \Rj−1, fj(x) = 0 elsewhere. The condi-
tion f ∈ BMO implies |mRj−1f −mRj

f | ≤ C‖f‖BMO, hence |mRj
f −mRf | ≤ C j ‖f‖BMO.

Finally, ‖fj‖2 ≤ C(1 + j) |Rj |1/2 ‖f‖BMO. One then writes 〈f, ψQ〉 =
∑∞

0 〈fj , ψQ〉.
For j ≥ 2, one has

〈fj , ψQ〉 ≤ ‖fj‖2

(∫
Rj\Rj−1

|ψQ(x)|2 dx
)1/2

≤ Cm ‖fj‖2

( |Q|
|Rj |

)m

for every m ≥ 1 (due to the rapid decay of ψ and the geometric condition Q ⊂ R).
For j = 0 or j = 1, one uses Plancherel’s identity and one has∑

Q

|〈fj , ψQ〉|2 = ‖fj‖2
2 ≤ C |R| ‖f‖2

BMO.
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One concludes observing that

∑
Q⊂R

∑
j≥2

j2
|Q|2
|Rj | = cn |R|.

The end of the proof of Theorem 3 is now obvious. In fact it is classical that the dyadic BMO
space is also characterized by (5.2) by decomposing the functions in the Haar system. Thus
U establishes an isomorphism between these two spaces. By duality, U (which is its own
transpose) defines an isomorphism between the usual Hardy space H1(Rn) and its dyadic
version. By interpolation U is an isomorphism on all the spaces Lp(Rn), 1 < p < +∞.

6. Characterization of the Homogeneous Hölder Spaces Cr, r > 0, of the Sobolev
Spaces Hs and of the Besov Spaces Bs,p

q

Let us recall that if 0 < r < 1, then f belongs to the homogeneous Hölder space Cr when
|f(x) − f(y)| ≤ C |x− y|r for all x ∈ Rn and all y ∈ Rn. If r = 1, then we agree to replace
Cr by the Zygmund class defined by |f(x+y)+f(x−y)−2f(x)| ≤ C|y| (x ∈ Rn, y ∈ Rn).

If r = m + s, 0 < s ≤ 1, m ∈ N, then one writes f ∈ Cr when ∂αf ∈ Cs for all
α ∈ Nn such that |α| = m.

The Sobolev space Hs, s ∈ R, is defined by∫
Rn

|f̂(ξ)|2 (1 + |ξ|2)s dξ < ∞,

and finally the homogeneous Besov spaces Bs,p
q are characterized by the Littlewood-Paley

decomposition. One starts with a function θ ∈ D(Rn), zero in a neighborhood of 0 and such
that

∑∞
−∞ |θ(2jξ)| ≥ 1 for every nonzero ξ ∈ Rn. Then a tempered distribution f , modulo

the polynomials, belongs to Bs,p
q if and only if ‖∆j(f)‖p ≤ 2−js εj , where εj ∈ �q(Z) and

where F(∆j(f))(ξ) = θ(2−jξ) (Ff)(ξ) denoting by F the Fourier transform (acting on the
tempered distribution f). We denote by ‖ · ‖p the norm in Lp(Rn; dx).

This space Bs,p
q does not depend on the choice of θ. One has Bs,∞∞ = Cs (homogeneous

Hölder space) and Hs = L2 ∩Bs,2
2 for s ≥ 0.

Theorem 5 A tempered distribution f (modulo the polynomials) belongs to Bs,p
q if and only

if supε∈E |〈f, ψ(ε)
Q 〉| = α(k, j) satisfies

( ∞∑
j=−∞

{(∑
k∈Zn

(α(k, j))p
)1/p

2j(s+n(1/2−1/p))
}q)1/q

< +∞ (6.1)

(with the usual changes if p = +∞ or q = +∞).

Let us first show the direct part. To simplify the writing we restrict ourselves to
dimension 1.
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Then the function ψ̂ which serves to define the wavelets will be our function θ and
one has

〈f, ψQ〉 = 2−j/2(2π)−1
∫
f̂(ξ) ei2

−jkξ ψ̂(2−jξ) dξ = 2−j/2 ∆j(f)(2−jk).

To conclude one uses the evident sampling lemma.

Lemma 5 There exists a constant C = C(n) such that for every R > 0, every p ∈ [1,+∞],
and every function f ∈ Lp(Rn; dx) whose Fourier transform is carried by the ball |ξ| ≤ 20R,
one has (

∑
k∈Zn R−n|f(kR−1)|p)1/p ≤ C(n) ‖f‖p.

Naturally 20 can be replaced (changing, if necessary, the constant C(n)) by another
constant. For us 20 ≥ 8π/3.

Thus one has for every j ∈ Z(
2−nj |∆jf(2−jk)|p

)1/p

≤ C(n) ‖∆j(f)‖p,

which obviously implies (6.1).
Conversely, assume that α(k, j) satisfies (6.1) and let us show that

f(x) =
∑∑

α(k, j) 2j/2 ψ(2jx− k)

belongs to Bs,p
q . One tests this belonging on the unit ball of the dual B−s,p′

q′ for which one
uses the direct part. The details are left to the reader.

7. Calculation of the Partial Sums of a Wavelet Expansion
Let f be a tempered distribution (modulo the polynomials). What can one say of the
difference

g(x) = f(x) −
∑
ε∈E

∑
|Q|≤1

〈f, ψ(ε)
Q 〉ψ(ε)

Q ?

It seems to be intuitive that the small cubes are responsible for the small details of f(x).
These small details are very important or significant if f(x) is very irregular. So that our
difference g(x) should be infinitely differentiable.

Let us denote by D(ε)
Q , ε ∈ E, Q ∈ Q, the orthogonal projection operator onto the

vector ψ(ε)
Q of the Hilbert space L2(Rn; dx). Similarly denote by EQ, Q ∈ Q, the orthogonal

projection operator onto the vector ϕQ. The functions ϕ and ψ are defined by Theorem 2.
Let us call Qj the collection of dyadic cubes with side 2−j and set

Dj =
∑
ε∈E

∑
Q∈Qj

D(ε)
Q and similarly Ej =

∑
Q∈Qj

EQ.

One has the following remarkable identity:

Theorem 6 For every j ∈ Z, Dj = Ej+1 − Ej.
Let us observe that Ej is a “regularizing version” of the conditional expectation opera-

tor with respect to the σ-algebra Fj generated by the cubes Q ∈ Qj . In fact, this conditional

240



“section3” — 2006/2/23 — 20:20 — page 241 — #95

PRECURSORS IN MATHEMATICS: EARLY WAVELET BASES

expectation is Ej(f) =
∑

Q∈Qj

χ
Q 2nj〈f, χQ〉 and Ej is given by the same identity with the

difference that 2nj χQ is replaced by the “C∞ version” ϕQ of the normalized characteristic
function of the cube Q.

Let us give the structure of the proof of Theorem 6 for dimension 1. One denotes by
∆j the operator of convolution with 2j ψ(2jx) and by Mj the operator of pointwise multi-
plication by exp(2πi2jx). Then a harmless application of the Poisson summation formula
shows that

Dj = ∆j∆∗
j + ∆jMj∆∗

j + ∆jMj+1∆∗
j + ∆jM

∗
j ∆∗

j + ∆jM
∗
j+1∆

∗
j .

One denotes by Sj the operator of convolution with 2jϕ(2jx), and one then has the
following remarkable identities:

∆j∆∗
j = Sj+1S

∗
j+1 − SjS

∗
j ,

∆jMj∆∗
j = −SjMjS

∗
j ,

∆jM
∗
j+1∆

∗
j = Sj+1Mj+1S

∗
j+1.

On the other hand, one performs for Ej the calculation we sketched for Dj and obtains
Ej = SjS

∗
j + SjMjS

∗
j + SjM

∗
j S

∗
j . It follows from all this that

Dj = Ej+1 − Ej .

Let us pass to the case of higher dimensions. For instance, if n = 2 one has, keeping the
notation of dimension 1,

Ej+1 ⊗ Ej+1 − Ej ⊗ Ej = Dj ⊗ Dj + Dj ⊗ Ej + Ej ⊗ Dj ,

and these three terms correspond to the three wavelets ψ(ε)
0 , ε ∈ E, Q ∈ Qj , necessary to

obtain our basis in dimension 2.
Thus Theorem 6 is proved, and these remarks yield a new proof of Theorem 2.
Returning to g(x), we then have

g(x) = f(x) −
∑
j≥0

Dj(f)

= f(x) −
∑
j≥0

(Ej+1(f) − Ej(f))

= E0(f)

=
∑
k∈Zn

ck ϕ(x− k),

where the coefficients ck are given by ck =
∫
f(u)ϕ(u− k) du.

This means that f(x) and g(x) differ by a trivial error term.
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8. Paraproducts and Wavelet Transforms
The function ϕ is the same as in Theorem 2. The operator Sj is the convolution with
2njϕ(2jx). One sets ∆j = Sj+1 − Sj and finally

π(a, f) =
∞∑

−∞
Sj−3(a) ∆j(f).

One assumes a(x) ∈ L∞ ∩ Cr and one reasons modulo the r-regularizing operators, that
is, those which transform Hs into Hs+r for all s ∈ R. The error terms are analyzed by the
following lemma.

Lemma 6 Let fj(x), j ∈ Z, be functions in L2(Rn) whose Fourier transforms f̂j satisfy,
for two constants R2 > R1 > 0,

f̂j(ξ) = 0 if |ξ| ≤ R12j or if |ξ| ≥ R22j . (8.1)

Then for every s ∈ R there exists a constant C = C(R1, R2, s, n) such that∥∥∥∥
∞∑

−∞
fj(x)

∥∥∥∥
Hs

≤ C

( ∞∑
−∞

‖fj‖2
2 (1 + 4j)s

)1/2

. (8.2)

Using this lemma one begins by replacing Sj−3(a) by Sj−10(a). Following that, one cal-
culates π(a, ψ(ε)

Q ) when Q is defined by 2m−k ∈ [0, 1]n. Then ∆j(ψ
(ε)
Q ) = 0 unless |m−j| ≤ 2.

One defines (by linearity) the operator Ra by

Ra(ψ
(ε)
Q ) = π(a, ψ(ε)

Q ) − Sm−10(a)ψ
(ε)
Q

and, using our lemma and the characterization by series of wavelets of the Sobolev spaces,
one shows that Ra is r-regularizing.

One can then state

Theorem 7 If r > 0 and a(x) ∈ Cr ∩L∞, the paraproduct π(a, f) is defined by linearity by

π(a, ψ(ε)
Q ) = SQ(a)ψ(ε)

Q

where, by an abuse of language, SQ(a) = Sj−10(a) when

Q = {x ∈ Rn; 2jx− k ∈ [0, 1]n};
if furthermore 0 < r < 1, one has, modulo an r-regularizing operator,

π(a, ψ(ε)
Q ) = a(2−jk)ψ(ε)

Q .

In other words, the paraproduct is diagonalized in the Hilbert basis of the wavelets.

9. Analysis of the Earlier Works on the Subject
The “continuous version” of the transformation into wavelets has a long history going back
to the works of A. Calderón and his collaborators. The discrete version appears in 1980
when L. Carleson proves that the Haar system, smoothed correctly, is an unconditional
basis of the space H1(T). Naturally Carleson’s wavelets do not form a Hilbert basis, but
there exists an associated biorthogonal system.
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Another process was introduced by Frazier and Jawerth [6] and, independently, in [4]
and [9].

The question is to exhibit ψ in S(Rn) so that one has, for everyfunctionf ∈L2(Rn; dx),

f(x) =
∑
Q∈Q

〈f, ψQ〉ψQ(x) (9.1)

without uniqueness.
It is sufficient for this that the Fourier transform of ψ be supported by the cube

−π ≤ xj ≤ π, 1 ≤ j ≤ n, and that one has, for all ξ �= 0,

1 =
∞∑

−∞
|ψ̂(2jξ)|2. (9.2)

If one has uniqueness in (9.1), then the functions ψQ(x) are automatically orthogonal
but this is excluded by the condition on the support of ψ̂.
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Actes du Colloque d’Analyse non linéaire du CEREMADE, Univ. de Paris-Dauphine).

[10] P. Wojtaszczyk, The Franklin system is an unconditional basis in H1, Ark. Mat. 20
(1982), 293–300.

This work was executed in the framework of “R.C.P. ondelettes” of the French Na-
tional Scientific Research Center M727.1285, December 1985.

243



“section3” — 2006/2/23 — 20:20 — page 244 — #98

SECTION III

−8 −6 −4 −2 0 2 4 6 8
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

Figure 1. Wavelet
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